K1. If \(xy = 1 \) and \(x \) is greater than 0, which of the following statements is true?

A. When \(x \) is greater than 1, \(y \) is negative.
B. When \(x \) is greater than 1, \(y \) is greater than 1.
C. When \(x \) is less than 1, \(y \) is less than 1.
D. As \(x \) increases, \(y \) increases.
E. As \(x \) increases, \(y \) decreases.
K2. In how many ways can one arrange on a bookshelf 5 thick books, 4 medium sized books and 3 thin books so that the books of the same size remain together?

A. $5! \times 4! \times 3! = 103680$

B. $5! \times 4! \times 3! = 17280$

C. $(5! \times 4! \times 3!) \times 3 = 51840$

D. $5 \times 4 \times 3 \times 3 = 180$

E. $2^{12} \times 3 = 12288$
K3. The acceleration of an object moving in a straight line can be determined from

A. the slope of the distance-time graph
B. the area below the distance-time graph
C. the slope of the velocity-time graph
D. the area below the velocity-time graph
K4. The value of \(\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h} \) is

A. 0

B. \(\frac{1}{2\sqrt{2}} \)

C. \(\frac{1}{2} \)

D. \(\frac{1}{\sqrt{2}} \)

E. \(\infty \)
K5. Which of the following graphs has these features:
\(f'(0) > 0, \ f'(1) < 0, \) and \(f''(x) \) is always negative?

A. \[
\begin{array}{c}
y \\
\end{array}
\]

B. \[
\begin{array}{c}
y \\
\end{array}
\]

C. \[
\begin{array}{c}
y \\
\end{array}
\]

D. \[
\begin{array}{c}
y \\
\end{array}
\]

E. \[
\begin{array}{c}
y \\
\end{array}
\]
K6. The line l in the figure is the graph of $y = f(x)$.

\[\int_{-2}^{3} f(x) \, dx \] is equal to

A. 3
B. 4
C. 4.5
D. 5
E. 5.5

<table>
<thead>
<tr>
<th>Subject</th>
<th>Item Key</th>
<th>Content Category</th>
<th>Performance Expectation</th>
<th>International Average Percent of Students Responding Correctly</th>
<th>International Difficulty Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mathematics</td>
<td>D</td>
<td>Calculus</td>
<td>Routine Procedures</td>
<td>58%</td>
<td>537</td>
</tr>
</tbody>
</table>
K8. Which one of the following conics is represented by the equation
\((x – 3y)(x + 3y) = 36\)?

A. Circle
B. Ellipse
C. Parabola
D. Hyperbola
K18. In the $\triangle ABC$ the altitudes BN and CM intersect at point S. The measure of $\angle MSB$ is 40° and the measure of $\angle SBC$ is 20°. Write a PROOF of the following statement:

"$\triangle ABC$ is isosceles."

Give geometric reasons for statements in your proof.
L3. A radio-active element decomposes according to the formula,

\[y = y_0 e^{-kt} \]

where \(y \) is the mass of the element remaining after \(t \) days and \(y_0 \) is the value of \(y \) for \(t = 0 \).

Find the value of the constant \(k \) for an element whose half-life (i.e. time to decompose half of the material) is 4 days.

A. \(\frac{1}{4} \log_e 2 \)

B. \(\log_e \frac{1}{2} \)

C. \(\log_2 e \)

D. \((\log_e 2)^{\frac{1}{4}} \)

E. \(2e^4 \)
L17. For what real value of k will the equation below describe a circle with radius 3?

$$x^2 + y^2 + 2x - 4y + k = 0$$

Show all your work.