Math 112 (Calculus I)
Exam 1
Jan 28-30, late day Feb 1

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
- Simplify your answers.
- Calculators are not allowed.
- Should you have need for more space than is allocated to answer a question, use the back of the page the problem is on and indicate this fact.
- Please do not talk about the test with other students until after the last day to take the exam.

For Instructor use only.

<table>
<thead>
<tr>
<th>#</th>
<th>Possible</th>
<th>Earned</th>
<th>#</th>
<th>Possible</th>
<th>Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>24</td>
<td></td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td></td>
<td>15</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td></td>
<td>16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td></td>
<td>17</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td></td>
<td>18</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub</td>
<td>63</td>
<td></td>
<td>Sub</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.

1. The domain of \(f(x) = \sin(\sqrt{x}) + 1/x \) is:
 a) \((-\infty, \infty)\) b) \([-1, 1]\) c) \((-1, 1)\)
 d) \([0, \infty)\) e) \((0, \infty)\)

2. Which of the following statements is true?
 a) The domain of the function \(y = |x^2 - 1| \) is \([0, \infty)\).
 b) The graph of \(y = f(-x) \) is a reflection of the graph of \(y = f(x) \) about the x-axis.
 c) If \(c > 1 \) then \(y = f(cx) \) compresses the graph of \(y = f(x) \) horizontally.
 d) The function \(y = -e^{x^2} \) is odd.
 e) The domain of \(y = e^x \) is all real numbers and the range is \([0, \infty)\).

3. If \(5e^{x/2} = 4 \), solve for \(x \).
 a) \(8/5 \) b) \(2 \ln 4 + \ln 5 \) c) \(\ln(16/25) \)
 d) \(2e^{4/5} \) e) \(2 \ln(5/4) \) f) \(\ln 4 - \ln 25 \)

4. Which of the following lists all of the vertical asymptotes of the function \(f(x) = \frac{x + 1}{(x^2 - 1)(x - 3)} \)?
 a) \(x = 3 \) b) \(x = -1 \) c) \(x = 1 \)
 d) \(x = 3, x = -1 \) e) \(x = 3, x = 1 \) f) \(x = 3, x = -1, x = 1 \)

5. Let \(f(x) = \frac{x^2 - 81}{|x - 9|} \). Find the limits \(\lim_{x \to 9^+} f(x) \) and \(\lim_{x \to 9^-} f(x) \)
 a) 18 and 9 b) 18 and -18 c) both 18
 d) 18 and -9 e) both 9 f) 9 and -9
 g) both undefined h) \(-\infty \) and \(\infty \) i) \(\infty \) and \(-\infty \)
6. Evaluate the limit \(\lim_{x\to 2} \frac{2x - 4}{\sqrt{2x} - 2} \)

 a) \(\infty \)
 b) \(-\infty \)
 c) 0
 d) 1
 e) 2
 f) 4

7. Suppose you know that \(\lim_{x\to -3} (2x + 7) = 1 \). Which of the following values for \(\delta \) would guarantee that
 \[|(2x + 7) - 1| < 0.01 \] if \(0 < |x + 3| < \delta \)?

 Select the largest correct answer below.

 a) 0.001
 b) 0.005
 c) 0.009
 d) 0.012
 e) 0.021
 f) None of the above.

8. Find a value of \(c \) for which the function below is continuous everywhere.

 \[f(x) = \begin{cases}
 cx^2 + 2x + 2 & x < 1 \\
 x^2 - 3x - c & x \geq 1
 \end{cases} \]

 a) 0
 b) 1
 c) \(-8\)
 d) 5
 e) \(-3\)
 f) None of the above.
Part II: Show all work.

9. (7 points) Let \(f(x) = 2x^2 - 5x + 1 \) and \(h \neq 0 \). Evaluate \(\frac{f(a + h) - f(a)}{h} \).

10. (9 points) Sketch the graph of \(y = 2 - \sqrt{x+4} \). State the domain and range.

\[
\begin{array}{c}
 y \\
 \hline \\
 x
\end{array}
\]

11. (7 points) Express the function \(F(x) = 4 - e^{x^3} \) in the form \(f \circ g \circ h \) for appropriate functions \(f, g \) and \(h \).
12. (7 points) Simplify the following as an algebraic function.

\[\cos(\tan^{-1} \frac{x}{3}) \]

13. (9 points) Find the inverse of the following function.

\[y = \frac{x - 1}{3x + 2} \]

14. (7 points) Let \(f(x) = \begin{cases}
1 & \text{if } x < -1 \\
\frac{1}{x+1} & \text{if } x = -1 \\
\frac{1}{x^2} & \text{if } -1 < x < 3 \\
11 & \text{if } x = 3 \\
9 & \text{if } 3 < x
\end{cases} \). Determine whether the following limits exist, and if so find their value:

\[\lim_{x \to -1^-} f(x), \lim_{x \to -1^+} f(x), \lim_{x \to -1} f(x), \lim_{x \to 3^-} f(x), \lim_{x \to 3^+} f(x), \lim_{x \to 3} f(x), \]
15. (7 points) Suppose $\lim_{x \to a} f(x) = 0$, $\lim_{x \to a} g(x) = -2$, $\lim_{x \to a} h(x) = -3$. Find

$$\lim_{x \to a} \cos(2f(x) - g(x) + 3h(x))$$

and justify each step by indicating the appropriate limit law(s).

16. (7 points) Show that $\lim_{x \to 0} |x| \cos(\pi/x) = 0$

17. (7 points) Show that $\ln x = 3 - 2x$ has at least one real solution.
18. (9 points) Prove the following statement using the epsilon, delta definition of limit.

$$\lim_\limits{x \to 4} (3x - 10) = 2.$$