Inequalities for Triangles and Pointwise Characterizations

Theorem (The Scalene Inequality): If one side of a triangle has greater length than another side, then the angle opposite the longer side has the greatest measure, and conversely.

\[\square\text{Referring to the diagram, let } AB > AC\text{ and find } D\text{ such that } A*D*B\text{ and } AD = AC.\text{ Since } D\text{ is interior to } \angle ACB, \text{ we have } \mu(\angle ACB) > \mu(\angle 1) = \mu(\angle 2). \text{ Since } \mu(\angle 2) > \mu(\angle B) \text{ by the exterior angle inequality, we have } \mu(\angle ACB) > \mu(\angle B).\]

For the converse, suppose that \(m\angle C > m\angle B\). There are three possibilities for the relationship between \(AB\) and \(AC\): Either \(AB < AC\), \(AB = AC\), or \(AB > AC\). By what we just proved, we cannot have \(AB < AC\) or else \(m\angle C < m\angle B\), a contradiction. Moreover, if \(AB = AC\), the triangle is isosceles and \(m\angle C = m\angle B\), a contradiction. So, \(AB > AC\). \(\blacksquare\)

Corollary 1: If a triangle has an obtuse or right angle, then the side opposite that angle has the greatest length.

Definition: A triangle is a *right* triangle if it has a right angle. The side opposite the right angle is called the *hypotenuse* and the other two sides are called *legs*.

Corollary 2: In a right triangle, the hypotenuse has length greater than that of either leg.
Theorem (The Triangle Inequality): In any triangle, the sum of the measures of two sides is greater than that of the third side. More generally: For any three distinct points A, B, and C, $AB + BC \geq AC$, with equality if and only if $A*B*C$.

Case 1: A, B, and C are not collinear: Given $\triangle ABC$, extend BC to point D so that $C*B*D$ and $BD = AB$. Then $DC = DB + BC = AB + BC$ since $C*B*D$.

Since $\triangle ADB$ is isosceles, $\mu(\angle 1) = \mu(\angle 2)$, and point B is interior to $\angle DAC$. So $\mu(\angle DAC) = \mu(\angle 2) + \mu(\angle 3) > \mu(\angle 2) = \mu(\angle 1) = \mu(\angle ADC)$. By the Scalene Inequality, $DC > AC$, so $AB + BC > AC$.

Note: We have shown that if $A*B*C$, $AB + BC = AC$, and if not $A*B*C$, then $AB + BC > AC$. This establishes the “if and only if” statement. ■
Corollary (Median Inequality – Not in our Text): Suppose that AM is the median to side BC of $\triangle ABC$ (i.e., M is the midpoint of BC). Then $AM < \frac{1}{2}(AB + AC)$.

Find point D such that M is the midpoint of AM. Then by SAS and CPCF, $AB = CD$. Consider $\triangle ACD$. By the triangle inequality, $AD < AC + CD = AC + AB$. But $AD = 2AM$, so we have $2AM < AB + AC$, or $AM < \frac{1}{2}(AB + AC)$. ■
Theorem (SAS Inequality, Alligator Theorem or Hinge Theorem): If in \(\triangle ABC \) and \(\triangle XYZ \) we have \(AB = XY \), \(AC = XZ \), but \(\mu(\angle A) > \mu(\angle X) \), then \(BC > YZ \), and conversely, if \(BC > YZ \), then \(\mu(\angle A) > \mu(\angle X) \).

\[\square \] Construct ray \(\overrightarrow{AD} \) between \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \) with \(\mu(\angle BAD) = \mu(\angle X) \), and with \(AD = XZ = AC \). Then \(\triangle ABD = \triangle XYZ \) by SAS, and \(BD = YZ \) by CPCF.

As in the figure below, construct the bisector of \(\angle DAC \). This cuts segment \(BC \) at an interior point \(E \). (Why?) Then \(\angle DAE = \angle EAC \), \(AE = AE \), and \(AD = AC \), so \(\triangle DAE = \triangle CAE \) by SAS. Then \(DE = EC \), and employing the triangle inequality on \(\triangle BED \), and because \(B*E*C \), \(BC = BE + EC = BE + DE > BD = YZ \), so \(BC > YZ \).

For the converse, use the same trick as in the Scalene Inequality: Suppose \(BC > YZ \) but \(\mu(\angle A) \leq \mu(\angle X) \). If \(\mu(\angle A) = \mu(\angle X) \), then \(BC = YZ \) by SAS and CPCF. If \(\mu(\angle A) < \mu(\angle X) \), then the proof we just gave would establish \(BC < YZ \), a contradiction. So \(\mu(\angle A) > \mu(\angle X) \). \(\blacksquare \)
Theorem: If l is a line and P is a point not on l, and let F be the foot of the perpendicular from P to l (i.e., the point where the perpendicular to l that contains P intersects l). If R is any point of l, then $PR > PF$.

□ Immediate from the above corollary that the hypotenuse of a right triangle is longer than either leg. ■

Definition: If l is a line and P is a point not on l, the *distance from P to l* is the distance from P to the foot F of the perpendicular from P to l.

Theorem (Pointwise Characterization of the Angle Bisector): Let A, B, and C be three noncollinear points and let P be a point in the interior of $\angle BAC$. Then P lies on the angle bisector of $\angle BAC$ if and only if P is equidistant from the sides of the angle, i.e., the lines \overline{AB} and \overline{AC}.

Theorem (Pointwise Characterization of the Perpendicular Bisector): The set of all points equidistant from each of two points A and B is the perpendicular bisector of \overline{AB}.

The proofs of these two theorems are straightforward applications of isosceles triangles and congruence theorems, and make good exercises.
Theorem (The Continuity of Distance): Given ray \(\overline{AB} \) and any point \(O \) not on \(\overline{AB} \), define a function \(d(x) \) for any real \(x \geq 0 \) as the distance from \(O \) to \(P \) on \(\overline{AB} \), where \(x \) is the distance from \(A \) to \(P \). That is, \(d(x) = OP \iff x = AP \). Then \(d(x) \) is continuous.

\[\square \] Pick \(\varepsilon > 0 \). Let \(R \) and \(S \) be points of \(\overline{AB} \) such that \(AR = x \) and \(AS = y \). Let \(|y - x| = |AS - AR| = RS < \varepsilon \). By the Triangle Inequality, \(OR \leq OS + RS \) and \(OS \leq OR + RS \).

Either way, \(|OS - OR| \leq RS \). Then we have \(|d(y) - d(x)| = |OS - OR| \leq RS < \varepsilon \). Thus \(d(x) \) is continuous. \(\blacksquare \)

Note: We will use this theorem later when we prove the Elementary Continuity of Circles in Chapter 10.